此外,郭天南团队在质谱分析数据的基础上,使用机器学习方法进一步“沙里淘金”,筛选出重症患者特征性的22个蛋白质和7个代谢物。血清样本成分符合这一组合的患者,很可能是重症患者,或有很大可能性发展为重症病例。这一发现有望用于重症患者的预测,促进医疗资源的合理调配,并为重症患者的药物选择提供一定指导。当然,该结果还需要在更多的独立临床队列中验证。 蛋白质表达是临床诊断的重要依据,疾病治疗的效果也取决于蛋白质机器的调控。郭天南团队和合作团队一起从今年2月底启动研究,他们采用新的质谱检测技术和机器学习的方法,短时间内整合蛋白质组、临床、生物、代谢组、计算等多学科数据,反复筛选、分析、比对、验证,率先完成了COVID-19轻重症患者的血清蛋白质组与代谢组分析,为新冠重症患者血清中发生的、独特的、目前尚不明确的分子病理改变提供了一个全景式的描述。 
蛋白质组大数据实验室
下一步,该实验室将继续使用多学科交叉与蛋白质组技术对新冠病毒感染进行深入研究,以期获得更多有助于理解病情发展规律的发现,辅助已有的检测、诊断手段,实现更精准、高效的治疗。 本项研究得到温州医科大学附属浙江省台州医院和迪安诊断凯莱谱代谢组学实验室的大力支持。腾讯基金会亦对本项目进行了资助。 |