“新浪i100指数基金”: 利用大数据,能分析投资者情绪
作为国内首批深度融入财经大数据的指数产品之一,去年9月,新浪财经联手南方基金、深证信息公司推出了“大数据系列指数”,包括“i100”和“i300”两只产品。
今天将开始发售的“i100”指数基金,规模上限为10亿元。
目前公开的信息显示,在选股策略上,它将基于财经媒体与社交平台的大数据,挖掘投资者情绪等因素,选出综合排名靠前的100只股票组成指数样本股。同时,“i100”样本股实施月度定期调整。
投资者情绪,如何挖掘?又如何将其用于投资?
即将负责“i100指数基金”的雷俊在接受媒体采访时表示,与国外股票市场更多是机构投资人主导不同,中国市场70%-80%是中小散户投资人,这导致了中国市场投资人本身的情绪对市场波动的影响非常大。而这些市场反应,可以通过用户的上网行为进行量化分析,从而可以提前判断。
数据显示,近一年来,“i100指数”上涨幅度达126.6%;今年截至4月10日,其涨幅超过59%,确实大幅跑赢了上证综指、沪深300等传统主流指数。
百度、腾讯产品: 数据来源不尽相同
从各互联网企业的宣传来看,它们推出的大数据指数基金,数据来源不尽相同,这也导致了产品的特点也不尽相同。
百度的百发100指数,是通过统计用户在百度的海量搜索数据并进行分析,再加上全网的各种有关投资的新闻资讯以及来自百度地图、百度产出的大数据。
腾讯的腾安主要是利用腾讯微博的影响力,挖掘了一批财经媒体、证券投资、行业研究、宏观经济以及金融工程等不同领域的专家,组成指数评审委员会,甄别剔除存在风险或不确定性的股票。
基金专家介绍说,大数据指数的核心创新点是将数据“压缩”成若干影响股价涨跌的因子,通过回测选择有效的因子加入量化选股模型。目前各个大数据基金基本都如此,只不过选择的因子不同。比如,腾讯的“中证腾安100”主要是内在价值因子、量化模型与专家评审相结合;百度的“百发100”是财务因子、综合动量因子和搜索因子;阿里的“淘金100”则是财务因子、市场驱动因子和聚源电商大数据因子。
|